- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hom, Cynthia (1)
-
Li, Ian (1)
-
MontaƱez, George D (1)
-
MontaƱez, George D. (1)
-
Pang-Naylor, Kerria (1)
-
Rajesh, Kishore (1)
-
Yik, William (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abductive reasoning is ubiquitous in artificial intelligence and everyday thinking. However, formal theories that provide probabilistic guarantees for abductive inference are lacking. We present a quantitative formalization of abductive logic that combines Bayesian probability with the interpretation of abduction as a search process within the Algorithmic Search Framework (ASF). By incorporating uncertainty in background knowledge, we establish two novel sets of probabilistic bounds on the success of abduction when (1) selecting the single most likely cause while assuming noiseless observations, and (2) selecting any cause above some probability threshold while accounting for noisy observations. To our knowledge, no existing abductive or general inference bounds account for noisy observations. Furthermore, while most existing abductive frameworks assume exact underlying prior and likelihood distributions, we assume only percentile-based confidence intervals for such values. These milder assumptions result in greater flexibility and applicability of our framework. We also explore additional information-theoretic results from the ASF and provide mathematical justifications for everyday abductive intuitions.more » « less
-
Hom, Cynthia; Yik, William; MontaƱez, George D. (, 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA))With the rapid growth of large language models, big data, and malicious online attacks, it has become increasingly important to have tools for anomaly detection that can distinguish machine from human, fair from unfair, and dangerous from safe. Prior work has shown that two-distribution (specified complexity) hypothesis tests are useful tools for such tasks, aiding in detecting bias in datasets and providing artificial agents with the ability to recognize artifacts that are likely to have been designed by humans and pose a threat. However, existing work on two-distribution hypothesis tests requires exact values for the specification function, which can often be costly or impossible to compute. In this work, we prove novel finite-sample bounds that allow for two-distribution hypothesis tests with only estimates of required quantities, such as specification function values. Significantly, the resulting bounds do not require knowledge of the true distribution, distinguishing them from traditional p-values. We apply our bounds to detect student cheating on multiple-choice tests, as an example where the exact specification function is unknown. We additionally apply our results to detect representational bias in machine-learning datasets and provide artificial agents with intention perception, showing that our results are consistent with prior work despite only requiring a finite sample of the space. Finally, we discuss additional applications and provide guidance for those applying these bounds to their own work.more » « less
An official website of the United States government
